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Supplementary Tables 1,2,6 and 7

Method HH HL LH LL HH HL LH LL

q = 0 q = 0.3

CAUSE 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.99
Egger Regression 0.97 0.88 0.61 0.48 0.96 0.82 0.59 0.45
GSMR 1.00 1.00 0.90 0.89 1.00 1.00 0.88 0.85
IVW Regression 1.00 1.00 0.99 0.92 1.00 1.00 0.95 0.87
LCV GCP 1.00 1.00 1.00 0.95 0.96 0.97 0.97 0.94
MR-PRESSO 1.00 1.00 0.91 0.87 1.00 1.00 0.89 0.83
Weighted Median 1.00 1.00 0.95 0.88 1.00 1.00 0.91 0.83
Weighted Mode 1.00 0.94 0.91 0.77 1.00 0.91 0.89 0.74

q = 0.1 q = 0.4

CAUSE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97
Egger Regression 0.97 0.83 0.60 0.44 0.94 0.81 0.58 0.41
GSMR 1.00 1.00 0.90 0.89 1.00 1.00 0.86 0.83
IVW Regression 1.00 1.00 0.98 0.92 1.00 1.00 0.92 0.84
LCV GCP 1.00 1.00 1.00 0.96 0.91 0.95 0.94 0.94
MR-PRESSO 1.00 1.00 0.91 0.87 1.00 1.00 0.85 0.80
Weighted Median 1.00 1.00 0.94 0.87 1.00 0.99 0.87 0.79
Weighted Mode 1.00 0.94 0.90 0.77 0.99 0.85 0.85 0.67

q = 0.2 q = 0.5

CAUSE 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.95
Egger Regression 0.96 0.84 0.54 0.45 0.92 0.75 0.52 0.44
GSMR 1.00 1.00 0.89 0.87 1.00 1.00 0.85 0.79
IVW Regression 1.00 1.00 0.97 0.90 1.00 1.00 0.90 0.80
LCV GCP 0.98 0.99 0.99 0.96 0.88 0.92 0.90 0.86
MR-PRESSO 1.00 1.00 0.90 0.85 1.00 1.00 0.84 0.77
Weighted Median 1.00 1.00 0.93 0.84 1.00 0.98 0.84 0.74
Weighted Mode 1.00 0.93 0.90 0.72 0.98 0.84 0.82 0.66

Supplementary Table 1: Area under curve values for CAUSE and other methods for ROC curves shown in
Figure 2c and Extended Data Figure 1. Column labels (HH, HL, LH, and LL) indicate the power of trait
M and Y GWAS (H = high power, L = low power) with the first letter referring to trait M and the second
letter referring to trait Y .
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Abbreviation Trait Sample Size Cases Controls PMID First Author (Year)

tg triglycerides 188577 24097068 Willer (2013)
ldl ldl 188577 24097068 Willer (2013)
hdl hdl 188577 24097068 Willer (2013)
height height 253288 25282103 Wood (2014)
bmi body mass index 322154 25673413 Locke (2015)
bf body fat percentage 100716 26833246 Lu (2016)
bw birth weight 153781 27680694 Horikoshi (2016)
dbp diastolic blood pressure 757601 30224653 Evangelou (2018)
sbp systolic blood pressure 757601 30224653 Evangelou (2018)
fg fasting glucose 46186 20081858 Dupuis (2010)
smoke ever regular smoker 1232091 30643251 Liu (2019)
alcohol drinks per week 941280 30643251 Liu (2019)

cad coronary artery disease 547261 122733 424528 29212778 van der Harst (2017)
stroke any stroke 446696 40585 406111 29531354 Malik (2018)
t2d type 2 diabetes 69033 12171 56862 22885922 Morris (2012)
asthma asthma 142486 23948 118538 29273806 Demenais (2018)

Supplementary Table 2: Genome wide association studies for common diseases and risk factors

Abbreviation Trait Sample Size Cases Controls PMID First Author (Year)

baso basophil count 173480 27863252 Astle (2016)
eo eosinophil count 173480 27863252 Astle (2016)
hct hematocrit 173480 27863252 Astle (2016)
irf immature frac-

tion of reticulo-
cytes

173480 27863252 Astle (2016)

lymph lymphocyte count 173480 27863252 Astle (2016)
mch mean corpuscular

hemoglobin
173480 27863252 Astle (2016)

mono monocyte count 173480 27863252 Astle (2016)
mpv mean platelet vol-

ume
173480 27863252 Astle (2016)

neut neutrophil count 173480 27863252 Astle (2016)
pdw platelet distribu-

tion width
173480 27863252 Astle (2016)

plt platelet count 173480 27863252 Astle (2016)
rdw red cell distribu-

tion width
173480 27863252 Astle (2016)

ret reticulocyte count 173480 27863252 Astle (2016)

sle lupus 23210 7219 15991 26502338 Bentham (2015)
ra rheumatoid

arthritis
103638 29880 73758 24390342 Okada (2014)

ibd irritable bowel
disease

96486 42950 53536 26192919 Liu (2015)

asthma asthma 142486 23948 118538 29273806 Demenais (2018)
allg allergic disease 360838 180129 180709 29083406 Ferreira (2017)

Supplementary Table 6: Genome wide association studies for blood cell traits and immune-mediated disesase.
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Traits CAUSE IVW Egger Wtd Med Wtd Mode MR-PRESSO LCV GCP LCV pval CAUSE q GC GC pval

White Blood Cell Traits

eo → allg 4 · 10−11 ↑ 4 · 10−38 ↑ 0.00021 ↑ 3.2 · 10−46 ↑ 0.014 ↑ 1.1 · 10−43 ↑ 0.13 0.27 0.81 0.39 1.9 · 10−18

eo → Asthma 1.9 · 10−5 ↑ 1.5 · 10−19 ↑ 0.015 ↑ 3.1 · 10−12 ↑ 0.9 ↑ 2.6 · 10−21 ↑ 0.06 0.76 0.62 0.37 9.9 · 10−8

baso → allg 0.14 ↑ 0.018 ↑ 0.84 ↓ 0.021 ↑ 0.28 ↑ 0.02 ↑ 0.01 0.91 0.06 0.13 0.0046
eo → ra 0.042 ↑ 8.1 · 10−9 ↑ 0.069 ↑ 1.6 · 10−6 ↑ 0.00091 ↑ 4.5 · 10−9 ↑ 0.2 0.36 0.31 0.09 0.015
baso → Asthma 0.91 ↑ 0.11 ↑ 0.68 ↑ 0.11 ↑ 0.51 ↑ 0.54 ↑ −0.18 0.025 0.03 0.14 0.1
mono → sle 0.74 ↓ 0.03 ↓ 0.077 ↓ 0.065 ↓ 0.36 ↓ 0.12 ↓ 0.05 0.62 0.03 −0.08 0.11
lymph → ibd 0.9 ↑ 0.12 ↑ 0.094 ↑ 0.025 ↑ 0.022 ↑ 0.0059 ↑ −0.26 0.7 0.03 −0.1 0.12
neut → Asthma 0.26 ↓ 0.11 ↑ 2.1 · 10−5 ↑ 0.6 ↑ 0.21 ↓ 0.099 ↓ −0.34 0.47 0.05 0.11 0.23
eo → sle 0.55 ↑ 0.12 ↑ 0.46 ↑ 0.007 ↑ 0.39 ↑ 0.098 ↑ −0.41 0.43 0.05 0.06 0.28
lymph → allg 0.4 ↓ 0.0032 ↓ 0.014 ↓ 0.052 ↓ 0.46 ↓ 0.00029 ↓ 0 0.54 0.04 −0.04 0.28
baso → sle 0.91 ↓ 0.97 ↑ 0.4 ↑ 0.2 ↑ 0.81 ↑ 0.51 ↑ −0.05 0.65 0.03 −0.09 0.34
mono → ibd 0.49 ↓ 0.16 ↓ 0.59 ↑ 0.68 ↓ 0.091 ↑ 0.35 ↓ −0.04 0.93 0.05 −0.06 0.43
baso → ra 0.99 ↑ 0.38 ↑ 0.95 ↑ 0.05 ↑ 0.063 ↑ 0.15 ↑ 0.09 0.61 0.03 −0.03 0.47
mono → allg 1 ↑ 0.058 ↓ 0.24 ↓ 0.02 ↓ 0.078 ↓ 0.14 ↓ 0.45 0.37 0.03 0.02 0.5
neut → sle 0.16 ↓ 0.0036 ↓ 0.068 ↓ 0.042 ↓ 0.039 ↓ 0.0042 ↓ 0.14 0.48 0.06 −0.05 0.52
neut → allg 0.7 ↑ 0.0034 ↑ 7.5 · 10−10 ↑ 0.0043 ↑ 0.51 ↑ 0.14 ↑ −0.07 0.72 0.03 0.03 0.53
eo → ibd 0.4 ↑ 0.73 ↑ 0.43 ↓ 0.00057 ↑ 4.8 · 10−6 ↑ 0.017 ↑ −0.01 0.91 0.05 0.04 0.54
neut → ibd 0.21 ↑ 0.18 ↓ 0.003 ↓ 3.2 · 10−5 ↓ 4.6 · 10−9 ↓ 0.11 ↓ −0.39 0.3 0.06 0.05 0.71
lymph → ra 1 ↑ 1 ↑ 0.42 ↓ 0.24 ↓ 0.063 ↓ 0.18 ↓ −0.15 0.3 0.03 −0.01 0.78
lymph → sle 0.9 ↓ 0.68 ↓ 0.77 ↓ 0.035 ↑ 0.14 ↑ 0.42 ↑ −0.52 0.23 0.03 −0.01 0.83
mono → ra 1 ↑ 0.64 ↓ 0.55 ↓ 0.0098 ↓ 6.6 · 10−5 ↓ 0.26 ↓ 0.02 0.88 0.03 0.01 0.87
baso → ibd 1 ↓ 0.051 ↓ 0.87 ↓ 0.0082 ↓ 0.41 ↓ 0.0051 ↓ 0.36 0.18 0.03 −0.01 0.88
mono → Asthma 0.61 ↓ 0.68 ↓ 0.96 ↑ 0.59 ↑ 0.7 ↑ 0.51 ↓ −0.26 0.69 0.03 0.01 0.88
neut → ra 0.97 ↑ 0.46 ↓ 0.21 ↓ 0.019 ↑ 0.017 ↑ 0.73 ↓ −0.02 0.6 0.03 −0.01 0.89
lymph → Asthma 0.85 ↓ 0.13 ↓ 0.17 ↓ 0.076 ↓ 0.42 ↓ 0.18 ↓ −0.3 0.69 0.03 0 1

Red Blood Cell Traits

hct → Asthma 0.95 ↓ 0.0024 ↓ 0.0055 ↓ 0.13 ↓ 0.21 ↓ 0.0065 ↓ 0.52 0.11 0.03 −0.1 0.025
hct → ibd 0.99 ↑ 0.25 ↑ 0.6 ↓ 0.9 ↑ 0.15 ↓ 0.26 ↑ −0.04 0.9 0.03 0.12 0.033
rdw → ra 0.03 ↑ 1.5 · 10−9 ↑ 0.00052 ↑ 1.1 · 10−6 ↑ 1.5 · 10−5 ↑ 5.7 · 10−9 ↑ 0.24 0.47 0.27 0.06 0.039
rdw → Asthma 0.064 ↑ 5.1 · 10−6 ↑ 0.55 ↑ 0.0042 ↑ 0.15 ↑ 1.2 · 10−6 ↑ 0.51 0.023 0.13 0.1 0.046
ret → sle 0.53 ↓ 0.049 ↓ 0.67 ↓ 0.024 ↓ 0.023 ↓ 0.06 ↓ −0.31 0.7 0.04 −0.1 0.063
irf → sle 0.5 ↓ 0.12 ↓ 0.11 ↓ 0.38 ↓ 0.72 ↓ 0.073 ↓ −0.37 0.85 0.07 −0.1 0.076
mch → ibd 0.87 ↓ 0.096 ↓ 0.42 ↓ 0.47 ↓ 0.1 ↓ 0.052 ↓ 0.07 0.61 0.04 −0.07 0.16
rdw → sle 0.056 ↑ 2.4 · 10−10 ↑ 0.039 ↑ 0.00015 ↑ 0.0012 ↑ 1.7 · 10−8 ↑ 0.48 0.28 0.35 0.11 0.18
mch → sle 0.11 ↓ 4.5 · 10−9 ↓ 4.4 · 10−6 ↓ 6.4 · 10−6 ↓ 4 · 10−4 ↓ 1.5 · 10−7 ↓ 0.6 5.2 · 10−11 0.16 −0.06 0.19
ret → Asthma 0.4 ↓ 0.11 ↓ 0.45 ↓ 0.36 ↓ 0.72 ↑ 0.2 ↓ −0.01 0.67 0.06 −0.04 0.29
ret → ra 0.12 ↓ 0.0034 ↓ 0.082 ↑ 0.018 ↓ 0.084 ↑ 0.00023 ↓ 0.29 0.49 0.08 −0.03 0.29
hct → ra 0.98 ↓ 0.88 ↓ 0.94 ↑ 0.022 ↑ 0.025 ↑ 0.61 ↓ 0.17 0.64 0.03 −0.04 0.31
mch → Asthma 0.1 ↓ 0.01 ↓ 0.24 ↓ 0.067 ↓ 0.14 ↓ 0.011 ↓ 0.29 0.37 0.07 −0.03 0.35
ret → allg 1 ↓ 0.15 ↓ 0.8 ↓ 0.68 ↓ 0.38 ↑ 0.38 ↓ −0.01 0.82 0.03 −0.02 0.42
mch → ra 0.12 ↓ 1.1 · 10−6 ↓ 6.9 · 10−6 ↓ 2 · 10−4 ↓ 3.1 · 10−8 ↓ 2.8 · 10−6 ↓ 0.43 0.54 0.12 0.02 0.48
hct → allg 0.8 ↑ 0.93 ↑ 0.45 ↑ 0.17 ↑ 0.13 ↑ 0.64 ↑ −0.01 0.95 0.03 −0.02 0.5
irf → ibd 0.32 ↓ 0.16 ↓ 0.53 ↓ 1.2 · 10−5 ↓ 2.6 · 10−5 ↓ 0.0015 ↓ 0.03 0.78 0.03 −0.03 0.52
hct → sle 0.71 ↓ 0.86 ↓ 0.67 ↑ 0.036 ↑ 0.082 ↑ 0.84 ↑ 0.34 0.52 0.04 0.03 0.52
rdw → ibd 1 ↑ 0.5 ↑ 0.73 ↑ 0.58 ↑ 0.83 ↓ 0.38 ↑ −0.19 0.67 0.03 0.03 0.55
irf → Asthma 0.49 ↓ 0.16 ↓ 0.7 ↓ 0.12 ↓ 0.34 ↓ 0.2 ↓ 0.17 0.69 0.05 0.02 0.64
ret → ibd 1 ↑ 0.86 ↑ 0.37 ↓ 0.05 ↑ 0.14 ↓ 0.41 ↑ −0.04 0.96 0.03 0.02 0.68
irf → allg 0.36 ↓ 0.023 ↓ 0.17 ↓ 0.0095 ↓ 0.016 ↓ 0.038 ↓ 0.17 0.93 0.06 0.01 0.68
rdw → allg 1 ↑ 0.86 ↓ 0.19 ↓ 0.62 ↓ 0.77 ↓ 0.85 ↓ 0.12 0.7 0.03 0.01 0.81
mch → allg 0.84 ↓ 0.58 ↓ 0.88 ↑ 0.3 ↓ 0.85 ↓ 0.38 ↓ 0.24 0.7 0.03 0 0.84
irf → ra 1 ↓ 0.79 ↓ 0.91 ↑ 0.42 ↓ 0.24 ↓ 0.67 ↓ 0.01 0.88 0.03 0 0.95

Platelet Traits

pdw → ibd 1 ↓ 0.42 ↑ 0.97 ↑ 0.008 ↑ 0.015 ↑ 0.055 ↑ −0.33 0.76 0.03 0.09 0.06
pdw → sle 0.4 ↑ 0.45 ↑ 0.18 ↓ 0.54 ↑ 0.53 ↓ 0.42 ↑ 0.03 0.99 0.05 0.12 0.065
pdw → allg 0.19 ↓ 0.00011 ↓ 0.28 ↓ 0.00095 ↓ 0.027 ↓ 0.00016 ↓ 0.11 0.66 0.21 −0.05 0.072
mpv → sle 0.54 ↑ 0.77 ↑ 0.8 ↑ 0.76 ↑ 0.63 ↑ 0.58 ↑ 0.02 0.49 0.04 0.06 0.14
plt → ra 1 ↑ 0.91 ↑ 0.37 ↓ 0.00031 ↓ 6.1 · 10−5 ↓ 0.7 ↓ −0.18 0.44 0.03 0.03 0.23
plt → Asthma 1 ↓ 0.61 ↑ 0.82 ↓ 0.59 ↑ 0.6 ↑ 0.55 ↑ 0 0.77 0.03 0.05 0.24
mpv → Asthma 1 ↓ 0.63 ↓ 0.53 ↓ 0.99 ↓ 0.79 ↓ 0.68 ↓ −0.04 0.67 0.03 −0.05 0.25
plt → sle 1 ↓ 0.35 ↑ 0.31 ↑ 0.023 ↑ 0.12 ↑ 0.85 ↑ 0.05 0.69 0.03 −0.04 0.33
mpv → allg 0.18 ↓ 0.071 ↓ 0.34 ↓ 0.029 ↓ 0.0079 ↓ 0.088 ↓ −0.04 0.88 0.07 −0.02 0.42
pdw → ra 1 ↓ 0.6 ↓ 0.17 ↓ 0.0048 ↓ 0.0018 ↓ 0.5 ↓ 0.08 0.81 0.03 −0.02 0.55
pdw → Asthma 0.29 ↓ 0.015 ↓ 0.057 ↓ 0.07 ↓ 0.12 ↓ 0.0085 ↓ 0.09 0.97 0.05 −0.03 0.59
plt → ibd 0.8 ↑ 0.75 ↑ 0.77 ↑ 0.93 ↓ 0.67 ↑ 0.49 ↑ −0.15 0.8 0.03 0.03 0.62
mpv → ibd 0.63 ↑ 0.39 ↑ 0.66 ↓ 0.4 ↑ 0.49 ↑ 0.16 ↑ −0.08 0.79 0.03 0.03 0.63
mpv → ra 0.99 ↑ 0.46 ↓ 0.86 ↓ 0.05 ↓ 0.0039 ↓ 0.82 ↓ 0.1 0.81 0.03 0.01 0.76
plt → allg 1 ↓ 0.22 ↓ 0.075 ↓ 0.56 ↓ 0.61 ↓ 0.38 ↓ −0.06 0.92 0.03 0 0.89

Supplementary Table 7: Summary of results for blood cell traits and immune-mediated diseases grouped by
blood cell category. Columns 2-7 give the p-value for each MR method. Values are bold if p < 0.05. Arrows
indicate the sign of the corresponding effect estimate. LCV GCP and LCV pval give estimated GCP from
LCV and p-value testing that GCP=0. Values are bold if estimated GCP> 0.6. The “CAUSE q” column
gives the posterior median of q in the CAUSE sharing model. GC and GC pval give the genetic correlation
and p-value testing that genetic correlation is zero estimated by LD score regression. In each section, pairs
are ordered by increasing genetic correlation p-value.
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SN1 Empirical Parameter Estimation

Analysis with CAUSE is comprised of two main steps (see Extended Data Figure 4). The first step is to
estimate nuisance parameters ρ, which accounts for overlap in the two GWAS samples and the parameters
defining the empirical joint prior distribution for βM,j and θj . We do this in two sub-steps. First, we select
a panel of candidate covariance matrices Σ0, . . . ,ΣK . Second, we fix γ = η = 0 and compute the maximum
a posteriori (MAP) values of ρ and π0, . . . , πK .

The set of candidate covariance matrices should be large enough that a flexible joint distribution can be
fit for βM,j and θj , but not so large that evaluating the likelihood becomes burdensome. To choose this set,
we first apply the Adaptive Shrinkage (ASH) method proposed by Stephens [1] to estimate the distributions
of βM and βY separately. Briefly, given a set of summary statistics for a single study, ASH estimates a
sparse unimodal distribution for the marginal effects. This distribution is flexible and parameterized as a
mixture of univariate normal distributions centered at 0. ASH uses the model

β·,j |$0, . . . , $L, ς0, . . . , ςL ∼
L∑
l=0

$lN(0, ς2l ),

where ς0, . . . , ςL are a fixed grid of variances with ς0 = 0. ASH estimates the mixing proportions $0, . . . , $L

using a prior on $ that encourages more weight to be given to $0, the proportion of effects equal to 0.
Despite starting with a large number of candidate variances, ASH solutions tend to place most of the weight
on only a few values. The resulting solution is sparse (most of the estimated effects are 0) and parsimonious
(there are few components in the model with non-zero mixing proportion).

Let ςM,0, . . . , ςM,lM and ςY,0, . . . , ςY,lY be the set of variances with non-zero weight in the ASH estimates
for traits M and Y respectively. Because ASH encourages sparsity, in all cases ςM,0 = ςL,0 = 0. We construct
the panel of candidate 2×2 covariance matrices by taking all pairs of these variances as diagonal elements
and setting the off diagonal elements to be 0. Thus if lM = 4 and lY = 3, our method produces a set of
(4 + 1)(3 + 1) = 20 candidate covariance matrices.

In the second step, we fix γ = η = 0 and calculate the MAP values of ρ and π0, . . . , πK . We use a
Dirichlet(10, 1, . . . , 1) prior on π0, . . . , πK with π0 corresponding to the covariance matrix of all zeros. This
prior is the same prior used by default in ASH and encourages a sparse solution, however the weights may
be adjusted by the user in the CAUSE software. We use a prior on z = tanh−1(ρ) of z ∼ N(0, 0.25), which is
a weak prior encouraging ρ to be close to zero. To calculate the MAP estimate, we use coordinate descent,
alternating between optimization of ρ with π fixed and optimization of π with ρ fixed. As observed by
Stephens [1] and others, maximization in π is a convex optimization problem that can be completed quickly.
In practice, we find that convergence is usually reached within five iterations.

SN2 Prior Distributions for γ and η

In most cases, little prior information is available about the size of the causal or confounding effect. Dif-
ferences in variable scaling and covariate adjustment across GWAS may make it difficult to predict the
magnitude of these effects. Fortunately, we find that CAUSE results are robust to a wide range in prior
distributions for these parameters. We require that the same prior be used for γ and η. If this is not the
case false positives can arise when the true shared factor effect is better represented by the prior on γ than
the prior on η. We use normal prior distributions with mean 0 and variance σ2γη for γ and η.

To assess the robustness of CAUSE to changes in σ2γη, we analyze data simulated from three scenarios

using a range of values for σ2γη. The three scenarios are 1) a setting with a causal effect (γ =
√

0.05, η = 0,

q = 0), 2) a setting with no causal effect but some correlated pleiotropy (γ = 0, η =
√

0.05, q = 0.3), and 3)
a setting with neither a casual effect or correlated pleiotropy (γ = 0, η = 0, q = 0). We analyze simulated
data using three values of σ2γη. These are chosen so that

√
0.05, is at the 80th, 65th, and 51st quantile of

the N(0, σ2γη) distribution, giving small, medium, and large values of σγη respectively. All simulations are
conducted with sample sizes NM = NY = 40, 000, the high power setting used in other simulations.

We compare p-values and posterior median estimates for γ, η, and q under the causal and sharing models
across different values of σ2γη. The Pearson correlation in p-values was greater than 0.95 for all settings and
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between all pairs of values of σ2γη. The correlation in posterior medians was higher than 0.8 for all parameters
and all settings except for estimates of q in setting 1 under the causal model. These had a somewhat lower
correlation (minimum correlation 0.51). However, in all cases the posterior median of q in the causal model
was very low – less than 0.05. These results demonstrate that very similar inference can be obtained using
a wide range of prior distributions for γ and η.

By default, σ2γη is chosen using the data. We use a set of variants with trait M p-value < 10−3 and

compute γ̂max = max | β̂2
β̂1
|. This is the largest magnitude of causal estimate that could be achieved using

only one variant. We then choose σ2γη so that the prior probability that γ or η has magnitude larger than
γ̂max is 0.05.

SN3 Approximating posteriors of γ, η, and q

We use an adaptive variation of a simple grid posterior approximation[2] to approximate the joint posterior
distribution of γ, η, and q. To compute this approximation, we begin with initial bounds on γ and η of
(−1, 1). These will be adaptively expanded as needed. The bounds on q are fixed at (0, 1).

The approximation proceeds as follows:

1. The domain of (γ, η, q) is divided into a coarse set of cubes. The approximate posterior probability of
each cube is computed by approximating the likelihood within the cube as constant and equal to the
likelihood at the midpoint of the cube.

2. After the first rough approximation, the bounds of γ and η are expanded so that less than 0.001 of
the posterior mass falls in the cubes closest to the boundary. These bounds are then fixed.

3. The grid is then iteratively refined until no cube contains more than 1% of the posterior density. At
each iteration, all cubes containing more than this are subdivided into nine smaller cubes and the
posterior is re-estimated.

SN4 Effects of LD

In this section we explore the question of whether the CAUSE model and likelihood are valid for variants in
LD. For simplicity, in this section only, we assume that the GWAS for traits M and Y have no overlapping
samples and have the same LD structure. CAUSE relies on two assumptions. The first is that the joint like-
lihood of all pairs of summary statistics can be factorized into the product of the likelihood for each variant.
Variants in LD are not independent, however, by pruning variants so that the set is nearly independent, we
can approximate this condition. The second assumption is that

Cov(β̂Y,j , β̂M,j |Zj , γ, η, βM,j) = (γ + Zjη)Var(βM,j) = (γ + Zjη)
(

Var(β̂M,j)− s2M,j

)
. (1)

Without LD, this is a consequence of Methods Equation 4 and the assumption that β̂M,j and β̂Y,j are

unbiased estimates of βM,j and βY,j . In the presence of LD, the expectation of β̂·,j (· may be M or Y ) is
not β·,j , but a combination of β·,j and a contribution from each variant in LD with variant j. Using results
from [3],

E[β̂·,j ] =
∑
k

rjks·,j
s·,k

β·,k ≡ β∗·,j , (2)

where rjk is the correlation between variant j and variant k. We refer to β∗·,j as the LD-transformed effects.
Note that if allele frequencies are the same in the two GWAS populations then sM,j = csY,j where c is a
constant depending on sample size. Thus

rjksM,j

sM,k
=
rjksY,j
sY,k

≡ hj,k. (3)
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We now derive Cov(β̂Y,j , β̂M,j |Z, γ, η,βM ) in the presence of LD, where Z is a vector with jth element equal
to Zj and βM is a vector with jth element equal to βM,j . We assume that direct effects are independent so

Cov(βM,j , βM,k) = 0 if j 6= k and Cov(βM,j , θk) = 0 for all j and k. We also assume that β̂M,j and β̂Y,j are
independent conditional on β∗M,j and β∗Y,j . With these assumptions,

Cov
(
β̂Y,j , β̂M,j |Z, γ, η,βM

)
=Cov

(∑
k

hj,kβY,k,
∑
k

hj,kβM,k

∣∣∣∣Z, γ, η
)

=
∑
k

h2j,kCov (βY,k, βM,k|Zk, γ, η)

=
∑
k

h2j,k (γ + Zkη) Var (βM,k) , (4)

and
Var(β̂M,j |Z) = Var(β∗M,j) + s2M,j =

∑
k

h2j,kVar(βM,k) + s2M,j . (5)

Suppose that the variant correlation structure can be decomposed into independent LD blocks and that
there is at most one M effect variant per block. If this variant has index k′ then, for any variant in the block

Cov
(
β̂Y,j , β̂M,j

∣∣Z, γ, η,βM) =h2j,k′
(
γ + Zk′η)Var(βM,k′

)
= (γ + Zk′η)

(
Var(β̂M,j)− s2M,j

)
. (6)

This means that, if Zk′ = 1, then variant k′ induces correlation between effect estimates for other variants
in the block, even when γ = 0. However, if we use only one variant per LD block to estimate parameters
then there is no distortion in the proportion of correlated variants. If γ = 0, then the proportion of variants
with correlated effect estimates will be equal q, the proportion of true effect variants acting through U . In
this case, CAUSE will not have an increased false positive rate but may have lower power if the variants
selected to use in estimation are far from the true causal variants. To maximize power, we prune for LD
prioritizing variants with low trait M p-values.

More generally, a block may contain multiple causal variants for M , with some acting on U (correlated
pleiotropic variants) and others not. Equation 4 implies that a correlated pleiotropic variant in LD with
variant j will induce non-zero correlation between β̂Y,j and β̂M,j even if γ = 0 and Zj = 0. The presence of
non-shared variants in a block reduces the correlation, but will not eliminate it. If M is highly polygenic
and q is large, the proportion of blocks containing at least one shared variant may be much larger than the
true value of q. In this case, LD can create an impression that a larger proportion of variants have correlated
effects, which can lead to inflated estimates of q and higher false positive rates using CAUSE. We assume
that these settings are rare. However, our simulations are conducted under moderately dense conditions
using 1000 effect variants and only 1,170 LD blocks, demonstrating that CAUSE still performs well even
under somewhat unfavorable conditions.

SN5 Connections with LCV

O’Connor and Price [4] propose an approach to identifying pairs of traits with causal relationships that
uses a latent causal variable (LCV) model. This model is similar to the CAUSE model with γ = 0. Rather
than modeling both correlated pleiotropy and a causal effect, the LCV model includes only a shared factor
(U in the CAUSE model) and estimates the “genetic causality proportion” (GCP). The GCP reflects the
relative proportions of heritability of each trait that are explained by a shared factor. A causal effect (with
no additional correlated pleiotropy from other sources) is equivalent to a model in which all variants act
through a shared factor. In this case, the GCP is equal to 1 or -1 depending on the direction of the effect.
LCV estimates the GCP and computes a test statistic testing whether GCP= 0. Models with non-zero GCP
are not necessarily causal and this p-value is not intended as a test of causality. O’Connor and Price [4] use
an estimated GCP larger than 0.6 to suggest a possible causal relationship.
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Because the LCV model is similar to the CAUSE model with γ = 0, we can derive an expression for
GCP in terms of CAUSE parameters under this condition. The LCV model uses two parameters qlcvM and
qlcvY , the square root of the proportions of trait M and Y heritability explained by the shared factor. Here
we use the same trait M and Y notation used in our discussion of CAUSE. In terms of CAUSE parameters
these are

qlcvM =
√
q (7)

qlcvY =

√
qηhM

hY
(8)

The GCP is then defined as

GCP =
log |qlcvY | − log |qlcvM |
log |qlcvM |+ log |qlcvY |

=
log(ηhM/hY )

log(qηhM/hY )
. (9)

From this formula, we see that GCP is non-zero if η and q are both non-zero. For example, if the heritability
of the two traits is equal, q = 0.3 and η =

√
0.05 then GCP= 0.55.

SN6 Additional Simulation Results

SN6.1 Effects of the prior on q

The choice of prior on q can affect the power and robustness of CAUSE. The default choice of a Beta(1, 10)
prior is used in the main Results. Here we compare simulation performance using Beta(1, 2), Beta(1, 10),
and Beta(1, 100) distributions. The Beta(1, 2) distribution is quite lenient, placing 25% of the prior mass on
values above 0.5. The Beta(1, 100) distribution is sharply peaked close to zero, placing 95% of the prior mass
below 0.03. In order for the CAUSE model to be identifiable, the prior on q must be asymmetric, placing
more weight on values less than 0.5. Figure SN1 shows results for simulations described in the main Results
(analogous to main text Figure 2). As we would expect, CAUSE with the Beta(1, 100) prior has high false
positive rate when the true proportion of correlated pleiotropy is large. CAUSE with the Beta(1, 2) prior
has fewer false positives for large values of q but also reduced power. We found the Beta(1, 10) prior to be an
attractive compromise because its power is only slightly worse than power obtained using the Beta(1, 100)
prior but the false positive rate is substantially improved. CAUSE shows the same performance in ROC
curves for the three prior choices (Figure SN1c). One consequence of these results is that using a more
permissive prior for q may be a better choice for higher powered studies. Results of CAUSE for pairs of
GWAS traits using different priors can be seen online at the CAUSE website (see URLs).

SN6.2 Parameter estimation

In the main Results, we focus on CAUSE’s performance in terms of power to detect causal effects and false
discovery rate. CAUSE also produces point estimates for parameters γ, η, and q as medians of marginal
posterior distributions from either the sharing or causal model. Figure SN2 compares point estimation
of the causal effect, γ, in simulations with a causal effect and no correlated pleiotropy using CAUSE and
other methods. All methods display some shrinkage. For methods besides CAUSE, shrinkage is attributed
to imperfect ascertainment of instruments. In every simulated data set, there is some chance of including
variants that are genome-wide significant by chance and are not tagging a causal trait M variant. These
variants are uncorrelated with Y and lead to underestimation of the causal effect. As the power of the
trait M GWAS increases, shrinkage diminishes because there are more strong M effect variants meeting the
inclusion criteria.

Some of the shrinkage in the CAUSE estimator is also due to uncertainty about which variants are
M effect variants. CAUSE uses all variants, and the strength of each variant’s affect on the estimate is
proportionate to the strength of its association with M . Variants that do not tag an M effect variant but
have strong associations with M by chance push the causal estimate downward. The CAUSE estimate is
also shrunk by the prior on γ which is a wide normal distribution centered at zero. The prior on q does not
affect the point estimate of γ in these experiments but does influence the width of the posterior distribution
for γ, with narrower posteriors corresponding to stronger priors on q (Figure SN2(b)).
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(a) False Positive Rate

(b) Power

(c) False Positive Rate vs Power

Figure SN1: Performance of CAUSE using different priors for q simulated data. (a) False positive rate
averaged over 100 simulated data sets in settings with no causal effect and a proportion of correlated
pleiotropic variants (q) ranging from 0 to 50%. (b) Power averaged over 100 simulated data sets in settings
with a causal effect and no shared factor. (c) Comparison of false positive-power trade-off. We compare the
power when γ =

√
0.05 and there is no shared factor to the false positive rate when there is no causal effect,

but a proportion q = 0.3 of variants act through a shared factor with effect η =
√

0.05 on Y . There are
100 simulations each in the causal and non-causal scenarios. Curves are created by varying the significance
threshold. Points indicate the power and false positive rate achieved at a threshold of p ≤ 0.05.
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CAUSE obtains a smaller mean squared error (MSE) than Egger regression and the modal estimator for
nearly every parameter value. MSE for Egger regression is not shown in Figure SN2c because it is much
larger than the MSE for any other method and including it in the plot masks differences between other
methods. CAUSE’s MSE is smaller or comparable to other methods for small causal effects and grows for
larger effects, reflecting its shrinkage.

We find that accurately estimating q and η is more challenging than estimating of γ. Posterior distri-
butions for q and η are strongly dependent and are affected by the prior distribution of q. In some cases,
posterior distributions may be multimodal, making the posterior median a poor summary. Figure SN3 shows
average posterior medians for q and η in simulations with correlated pleiotropy and no causal effect. As
expected, posterior medians of q are shrunk more closely to zero when the prior places more weight on small
values. This leads to wide credible intervals for η because there is little information about this parameter
if q is small. Using the Beta(1, 2) prior for q we find that credible intervals for η are slightly narrower and
that the posterior median is less shrunk relative to the true value but that credible intervals for q are quite
wide. We are only able to obtain accurate estimates of q and η in the highest power scenarios.

SN6.3 Causal effects with shared factors

We explore simulation scenarios with both a causal effect and correlated pleiotropy. We focus primarily on
settings with antagonistic correlated pleiotropy (correlation in the opposite direction from the causal effect),
since we expect these scenarios to be the most difficult.

We first examine how a shared factor affects the power of each method. We simulate data with a causal
of 0.2 and a proportion of variants, q = 0.1 or 0.3 acting through a shared factor with effect η ranging from
-0.4 to 0.1. The power of CAUSE and other methods is shown in Figure SN4. A detection is only counted if
the sign of the point estimate is positive. We did not find that erroneously detecting negative causal effects
was a problem for any method (Egger regression detected one across all simulations and no other methods
detected any). We find that CAUSE is able to maintain power when the shared factor effect has a smaller
magnitude than the causal effect, but that when the shared factor effect is equal to the causal effect or larger
and in the opposite direction, the power of CAUSE decreases. For larger antagonistic effects, correlation
from the shared factor cancels out the correlation from the causal effect and the pattern of effect estimates
becomes similar to the pattern created by a shared factor only.

Next we compare the ability of CAUSE and other methods to discriminate a scenario with a causal
effect and a shared factor from one with only a shared factor. The LCV GCP estimate is included in these
comparisons. In each comparison, the non-null scenario is identical to the null scenario but with the addition
of a causal effect. We consider shared factors accounting for 10% and 30% of trait M variants and causal
effects of γ = −1∗η or γ = −2∗η. The shared factor effect η is the same in all comparisons. Curves showing
the trade-off between false and true positives are shown in Figure SN5. We find that, although CAUSE has
lower power when there is an antagonistic shared factor, it is able to discriminate causal and non-causal
scenarios at least as well as other methods.

SN6.4 Asymptotic behavior

In the main simulation results, we find that CAUSE has higher false positive rate for large q when the trait
M GWAS has high power than when the trait M GWAS has low power. We expect that with a large enough
sample size, CAUSE’s false positive rate should drop to zero. To verify this expectation, we conducted a
small set of simulations with very high powered GWAS for both trait M and trait Y . Figure SN6 shows
results using for three different levels of correlated pleiotropy (q = 0.1, 0.3, and 0.5). We find that, consistent
with our expectations, with very high powered GWAS, CAUSE is always able to identify the correct model.
Figure SN6 includes results for data simulated using the LD structure used in other simulations (left) and
data simulated with no LD, showing that some false positives obtained by CAUSE are due to the functional
inflation of q that results from variants in LD. Although the power of these simulated studies is beyond what
would be expected from current GWAS sample sizes, these explorations verify that CAUSE is behaving as
expected and suggest that, as GWAS sample sizes continue to grow, it will be possible to obtain more
accurate MR results.
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(a)

(b)

(c)

Figure SN2: Point estimation of γ for simulated data with a causal effect and no correlated pleiotropy. (a)
Comparing CAUSE to other MR methods, points indicate the average point estimate over 100 simulations.
CAUSE is run with the default Beta(1, 10) prior for q. The dotted black line shows the true parameter value.
(b) Comparing different priors for q. Error bars show average upper and lower extents of 95% credible
intervals. CAUSE obtains the same point estimate using different priors but the posterior distribution
is more peaked using a stronger prior on q. (c) Comparing mean squared error across methods. Egger
regression is omitted because it obtains an MSE much larger than the other methods. CAUSE results using
the default prior are shown. Note that the vertical axes in (c) are not the same across panels.
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(a) Estimation of q

(b) Estimation of η

Figure SN3: Estimation of q and η from the sharing model in simulations with no causal effect. Points
show the average posterior median over 100 simulations. Upper and lower ends of vertical bars indicate
the average upper and lower boundary of 95% credible intervals. Dotted lines show the true value of the
parameter with estimates shown, either q (a) or η (b).
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Figure SN4: Power comparison in simulations with both a causal effect and correlated pleiotropy. In all
simulations, the causal effect is 0.2. Either 10% (top row) or 30% (bottom row) of variants display correlated
pleiotropy with effect size given on the horizontal axis. Points indicate the proportion on simulations detected
to have a positive causal effect by each method.

SN7 Existing Information About Pairs of GWAS Traits

We provide brief summaries of literature about the relationships of the 12 risk factors and four diseases
examined in the main Results. We have classified the relationship of each pair as considered causal (C),
supported by literature (S), unknown (U), implausible and unsupported by literature (I), or considered non-
causal (N). We classify a trait pair as considered causal if there are clinical trial or similar results supporting
a causal effect and the effect is generally accepted in the literature. We classify pairs as supported by
literature if there are strong molecular or physiological hypotheses supporting the effect and observational
correlations. We classify pairs as implausible if there is no suggestion of a causal effect in the literature
there is no genetic correlation. Effects of HDL on CAD and stroke are classified as considered to be non-
causal, discussed below. All remaining trait pairs are classified as unknown or ambiguous. These include
pairs that are correlated observationally but clinical trial or molecular evidence does not support a causal
effect and pairs that are subject to ongoing debate. Below we summarize the literature used to make each
classification, grouped by risk factor. At the end of the summary for each risk factor we list in parenthesis
our classification of its relationship with CAD, stroke, T2D, and asthma in that order.

• Alcohol: Alcohol consumption is difficult to study due to its correlation with other dietary and lifestyle
factors. Observational studies have suggested a protective effect of moderate alcohol consumption on
cardiovascular disease including CAD and stroke [5]. This is the opposite direction of effect suggested
by modal MR of alcohol on CAD, the only method to find a causal effect of alcohol on any trait
at p < 0.05. In a clinical trial, Davies et al. [6] find moderate alcohol consumption associated with
increased insulin sensitivity, and decreased triglycerides, but no effect on fasting glucose. To our
knowledge, there is no evidence linking alcohol consumption and asthma. (U, U, U, I)

• Smoking: Smoking is a well-known risk factor for cardiovascular disease (CVD), including CAD and
stroke, and has been studied extensively through observational and molecular studies over the last
several decades [7]. This report also concludes that smoking is a cause of T2D, and that there may be
a causal relationship between smoking and asthma, but this remains inconclusive. No MR methods
are able to detect effects of smoking on either diabetes risk or asthma. Associations between smoking
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(a) (Null) q = 0.1, η = −
√

0.02, γ = 0 vs (Non-Null). q = 0.1, η = −
√

0.02, γ =
√

0.02

(b) (Null) q = 0.3, η = −
√

0.02, γ = 0 vs (Non-Null). q = 0.3, η = −
√

0.02, γ =
√

0.02

(c) (Null) q = 0.1, η = −
√

0.02, γ = 0 vs (Non-Null). q = 0.1, η = −
√

0.02, γ = 2 ∗
√

0.02

(d) (Null) q = 0.3, η = −
√

0.02, γ = 0 vs (Non-Null). q = 0.3, η = −
√

0.02, γ = 2 ∗
√

0.02

Figure SN5: Comparison of false positive-power trade-off. There are 100 simulations each in the causal and
non-causal scenarios. Curves are created by varying the significance threshold. Points indicate the power
and false positive rate achieved at a threshold of p ≤ 0.05 or ˆGCP0.06 for LCV.
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Figure SN6: False positive rate for CAUSE with increasing sample size. The confounder effect is η =
√

0.05.
Each point shows the average over 20 simulations. In the left panel we show results using the same LD
structure used in the paper. The right panel shows results using data with no LD.

behavior and asthma risk may be confounded by effects of parental smoking behavior. (C, C, C, S)

• Blood pressure (SBP, DBP): Two recent clinical trials have studied effects of intensive blood pressure
lowering in groups with high risk of CVD. The ACCORD study [8] included individuals with T2D
which is associated with elevated risk of CVD. The SPRINT trial [9] included individuals with baseline
systolic blood pressure above 130 mm Hg and excluding those with prior stroke. Both studies had
primary composite outcomes including both myocardial infarction and stroke. ACCORD did not find
a significant effect of intensive blood pressure lowering on the composite outcome but did find evidence
of an effect on stroke, a secondary outcome. The SPRINT trial was stopped early due to a significantly
lower rate of cardiovascular events in the intensive treatment group suggesting a causal effect. The
difference between treatment groups in SPRINT was driven primarily by a decrease in heart failure
and a post-hoc analysis of stroke is not significant [10]. This may be attributable to the lower stroke
risk of the SPRINT population, which may reduce power to detect an effect. Although the two studies
have somewhat different outcomes, we classify the relationships of blood pressure with CAD and stroke
both as considered causal due to strong observational evidence and support in clinical trials. To our
knowledge, no randomized trials have examined relationships between blood pressure and T2D risk
or asthma risk. Because blood pressure and asthma are also not genetically correlated, we classify
that relationship as implausibly causal. Blood pressure and T2D are genetically correlated so this
relationship is classified as unknown. (C, C, U, I)

• Fasting Glucose: Blood glucose control and insulin sensitivity are disrupted in T2D. Impaired fasting
glucose is one of the diagnostic criteria for diabetes so it would be reasonable to expect these traits to
share most of their genetic variants. CAUSE finds a significant result in both directions which is con-
sistent with this expectation. It has been suggested that elevated levels of blood glucose can contribute
to T2D risk by encouraging more insulin production which eventually overtaxes the pancreas. The
causal ordering between elevated is unclear plausibly reciprocal (i.e. there may be causal relationships
in both directions). In a meta analysis of cohort studies, Sarwar et al. [11] find a strong correlation
between T2D and CVD. However, they find that the relationship between CVD and fasting glucose
is non-linear and not significant in lower ranges. It is possible that this association is mediated by
diabetic disruption of lipid profiles rather than elevated blood glucose. Fasting glucose is genetically
correlated with stroke and CAD but existing literature does not provide clear evidence of a causal effect
so these effects are classified as unknown. Fasting glucose and asthma are not genetically correlated
and have not been linked in epidemiological literature. (U, U, S, I)

• Birth Weight: Horikoshi et al. [12] study genetic effects on birth weight and genetic correlation with
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other traits including CAD, T2D, and asthma. They find a strong negative genetic correlation between
birth weight and both CAD and T2D and no significant genetic correlation with asthma. In our study
we additionally find no significant genetic correlation with stroke. Explanations for the observed
genetic correlations are unknown and may result from a combination of both maternal and fetal
genetics. Tyrrell et al. [13] observe a negative correlation between paternal diabetes and birth weight
and a positive correlation between maternal diabetes and birth weight. This is consistent with a model
in which fetal inheritance of diabetes risk alleles lowers birth weight by impeding glucose metabolism
but exposure to maternal high glucose during gestation increases birth weight. Horikoshi et al. [12]
suggest that the relationship between birth weight and CAD may be mediated by effects on blood
pressure. If this were the case, we might also expect an effect on stroke risk, though no methods
except Egger regression find evidence of this relationship in our data. (U, U, U, I)

• Height: Inverse correlations between adult height and both heart disease and stroke have been found
in observational studies, with stronger and more consistent results for heart disease [14, 15]. In a
Mendelian randomization study, Nüesch et al. [16] find evidence of a causal effect of height on CAD
but not stroke. The authors suggest that the effect of height on CAD may be mediated by effects on
lung function and lipid profiles. This study uses overlapping data and similar approaches to those used
here so cannot be viewed as independent evidence. However, based on strong observational correlation
and presence of a physiological explanation for a possible effect, we classify the effect of height of CAD
as supported. We classify the effect of height on stroke as unknown. Height is not expected to be
causally related to T2D or asthma and is not genetically correlated with either of these traits. (S, U,
I, I)

• BMI and Body Fat Percentage: We use the same classifications for body fat percentage and BMI
because they are closely related and, there is not always research examining the two traits separately,
and we have not found qualitatively different evidence for the two traits. Overweight and obesity is
often considered a risk factor for CVD. Recently, Khan et al. [17] combined data from 10 prospective
longitudinal cohort studies in the Cardiovascular Disease Lifetime Risk Pooling Project to estimate
lifetime risk of CVD in BMI categories. They find increased risk of CVD in the highest categories
with risk increasing for groups with higher BMI. This trend was strongest for cardiac outcomes and
was weaker for stroke. Observational associations are suggestive but don’t establish causality or the
mechanism of association. However, because the correlations are found across studies and remain after
controlling for lifestyle factors such as smoking, we categorize the relationships between BMI/body
fat and CAD/stroke as supported. Obesity is typically considered a risk factor for T2D, primarily
supported by consistent observational associations with higher risk in higher BMI categories [18]. Ad-
ditional research has supported body fat as a stronger predictor of T2D than BMI [19]. Associations
have been found between BMI and asthma in children, including in a Mendelian randomization study
[20, 21]. However, the mechanism of this association is unknown and complicated by other environ-
mental factors such as maternal BMI during gestation. It is also possible for asthma to increase risk of
high BMI through decreased physical activity [22]. In a longitudinal study of a Swedish birth cohort
Ekström et al. [22] observe higher BMI throughout childhood for females with persistent asthma but
not for males or for children with transient asthma or asthma which onset after 4 years. Based on
these findings, we categorize the relationship between BMI and body fat and asthma as unknown. (S,
S, S, U)

• HDL: Low levels of HDL cholesterol are correlated with increased risk of heart disease and stroke in
observational studies. However, HDL is also correlated with other known CAD risk factors including
LDL cholesterol. Voight et al. [23] identify a large effect monogenic variant affecting HDL independent
of LDL and triglyceride levels and demonstrate no association between this variant and CAD. Addi-
tionally, Burgess and Bowden [24] use multivariable MR to adjust for LDL cholesterol and triglyceride
levels and find no effect of HDL on CAD conditional on these variables. In addition to this evidence,
there are several Mendelian variants with large effects on HDL cholesterol levels that do not have clear
effects on cardiovascular disease, and clinical trials of HDL raising drugs have failed to consistently
show an effect. In combination, this evidence has created significant doubts that HDL cholesterol
is protective for atherosclerosis as had been previously hypothesized [25]. Dyslipidemia (high LDL
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cholesterol, high trigylycerides, low HDL cholesterol) is often associated with T2D. This observation
has been attributed to secondary effects of insulin resistance [26] but there have also been suggestions
that imbalanced lipids could play a role in disease development and that particularly, HDL may be
protective for pancreatic β-cells [27]. A Mendelian randomization study [28] using overlapping data to
the data used here finds nominal associations for some tests including association between genetically
higher LDL and lower risk of diabetes and weaker associations for higher HDL and lower disease risk.
We note that the association between genetically predicted LDL and T2D has opposite sign from the
observational association. Fall et al. [28] conclude that they have not identified consistent evidence
for a causal role of circulating lipids and cite several possible confounding factors that may affect MR
results. Based on this we classify the relationship of HDL with T2D as unknown. HDL cholesterol
and asthma have not been linked and are not genetically correlated. (N, N, U, I)

• LDL: LDL cholesterol has been studied extensively through randomized trials of LDL lowering drugs
and through MR studies of strong Mendelian LDL effect variants. Cholesterol Treatment Trialsists
Collaborators [29] meta-analyze 14 statin trials and find a significant reduction in incidence of coronary
heart disease and events related to vascular disease including myocardial infarction and stroke. In
addition to this evidence, studies of individuals with monogenic forms of high LDL cholesterol find
that these individuals are at high risk for atherosclerosis, or a buildup of plaque in the arteries that can
lead to heart disease and stroke and find higher incidence of CAD for individuals with monogenic high
LDL cholesterol than for those without those mutations [30, 31]. Based on this evidence, we classify
relationships of LDL with CAD and stroke as considered causal. Based on research summarized in the
HDL section, we classify the relationship of LDL and T2D as unknown. We further note that genetic
and observational studies suggest different directions of association between LDL and T2D with high
LDL often observed in individuals with T2D but genetically lower LDL associated with higher risk
using some methods. Meta analysis of trials of statin therapy, which lowers LDL, indicates that statin
use raises risk of T2D [32, 33]. However, it is unknown if this risk is mediated by statin effects on
LDL cholesterol or other mechanisms. Neither [32] nor [33] find an association between changes in
LDL cholesterol and differences in T2D risk across studies. Statins reduce LDL cholesterol through
inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR). Swerdlow et al. [34] show that at
least some of the effect of statins on T2D risk is likely mediated by statin effects on HMGCR using
two genetic variants in the HMGCR gene. One of these variants has an allele that is associated with
lower HMGCR expression and higher T2D risk. The other was not able to be assessed for expression
association and has suggestive but non-significant association with T2D risk. However, both variants
have pleiotropic effects, decreasing LDL cholesterol and increasing BMI, body weight, waist to hip
ratio, and plasma insulin. Therefore, although the action of HMGCR may be mediating statin effects
on T2D, it is not known if these are also mediated by lowered LDL cholesterol. LDL cholesterol and
asthma have not been linked and are not genetically correlated. (C, C, U, I)

• Triglycerides: Like LDL cholesterol, high triglyceride levels are positively correlated with risk of heart
disease and stroke. Whether this relationship is causal and if triglycerides should be a therapeutic
target has been debated and there is conflicting evidence. In a summary from the American Heart
Association, Miller et al. [35] note that associations with cardiovascular disease disappear after con-
trolling for other factors including HDL and non-HDL cholesterol levels. They conclude from a range
of epidemiological and molecular evidence that triglyceride levels are not directly atherogenic but
are useful biomarkers for cardiovascular disease due to high correlation with levels of risk increasing
particles. However, a recent meta analysis of clinical trials of lipid lowering therapies that reduce
triglycerides more than they reduce LDL cholesterol does find a significant effect of triglycerides on
risk of cardiovascular events [36]. This association was strongly influenced by a single outlying study
and becomes non-significant when that study is removed. Two Mendelian randomization studies ad-
justing for LDL and HDL found a significant effect of triglycerides on CAD [37, 24]. Based on this
research we classify the relationship of triglycerides and CAD as supported though we note that this
issue is still debated and classify triglycerides and stroke as unknown. Based on research summarized
under HDL we classify the effect of triglycerides on T2D as unknown. Triglycerides and asthma have
not been linked and are not genetically correlated, so we classify that relationship as implausible. (S,
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(a) (b)

Figure SN7: Effect size estimates and variant level contribution to CAUSE test statistics for four trait
pairs. Effect estimates for trait M (horizontal axis) are plotted against estimates for trait Y (vertical axis).
Error bars have length 1.96 times the standard error of the estimate. Triangles indicate variants reaching
genome-wide significance for trait M (p < 5 · 10−8). Variants with trait M p-value < 5 · 10−6 are shown.
Dotted lines show the IVW estimate obtained using only genome-wide significant variants. (a) Body fat
percentage (M) and CAD (Y ). (b) Body fat percentage (M) and T2D (Y ).

U, U, I)

SN8 Discussion of selected negative results of CAUSE

In main Table 1, there are several pairs of traits that are often considered to be causal and have some
literature support, but CAUSE does not find a significant result. In order to understand these results more
thoroughly, we examine the data and point-wise contribution to the CAUSE test statistic for these trait
pairs.

SN8.1 Body fat percentage and CAD and T2D

Effect size plots for BF → CAD and BF → T2D are shown in Figure SN7, illustrating why CAUSE obtains
a negative result. For both CAD and T2D there is significant heterogeneity in effect size correlation and
slightly sub-threshold variants are not consistent with a causal effect. Causal effects of body fat percentage
are found more strongly by the weighted median, weighted mode, and in the case of T2D, MR-PRESSO,
methods that down weight variants with heterogeneous or “outlying” effect size correlations.

SN8.2 Triglycerides and CAD

The effect of triglycerides on heart disease risk has been debated with conflicting evidence and opinions in
the literature (see SN Section SN7). It is complicated by the fact that triglycerides are both genetically
and observationally correlated with several CAD risk factors including LDL cholesterol. Two Mendelian
randomization studies, Do et al. [37] and Burgess and Bowden [24], have tested for a causal effect of
triglycerides on heart disease controlling for LDL and HDL cholesterol. Both studies find in favor of a
causal effect. In the data, we see that some variants are strongly associated with triglyceride levels but not
with CAD or in the opposite direction from the main trend (Figure SN8a). Some of these variants are also
strongly associated with LDL cholesterol or systolic blood pressure (Figures SN8b,c), and there appears
to be less heterogeneity even when variants associated with these factors are removed, though this also
eliminates all variants most strongly associated with triglycerides (Figure SN8d). In order to assess whether
complex pleiotropy between triglycerides, LDL, and SBP could explain CAUSE’s negative result, we ran
CAUSE twice using two different subsets of variants. First using only variants with LDL p-value > 0.05 we
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Figure SN8: Effect size estimates and variant level contribution to CAUSE test statistics for triglycerides
and coronary artery disease. Symbols and error bars as in previous plots. Dotted lines show the IVW
estimate obtained using only genome-wide significant variants. (a) All variants with triglycerides p-value
< 1 · 10−6. Dotted line shows MR estimate using genome-wide significant variants. (b) Only variants with
LDL p-value < 5 · 10−8. (c) Only variants with SBP p-value < 5 · 10−8. (d) Only variants with LDL p-value
> 0.05 and SBP p-value > 0.05.

obtained a p-value from CAUSE of 0.3 suggesting that LDL does not fully explain the heterogeneity of effect
correlation. Second, using only variants with LDL p-value > 0.05 and SBP p-value > 0.05, we obtained a
p-value from CAUSE of 0.044. These analyses are exploratory and more work needs to be done to fully
understand this relationship.

SN9 Results using a low powered blood pressure GWAS

We use a lower-powered GWAS for systolic and diastolic blood pressure [38] to shed light on the performance
of each method. This study includes only 69,395 individuals, about 10% of the sample size of the GWAS
performed by Evangelou et al. used in the main Results. We note that the Ehret et al. study is a subset
of the sample used by Evangelou et al. Results using the lower powered GWAS are shown in Table SN1.
Interestingly, IVW regression and Egger regression are unable to detect the effect of blood pressure on CAD
using the smaller study. An explanation for this can be seen in the effect estimates for SBP and CAD
plotted in Figure SN9. Only seven variants reach genome wide significance. Six have correlated effects
on both traits but one highly significant variant contradicts this pattern with a negative association with
SBP and a strong positive association with CAD. The weighted median, weighted mode, and MR-PRESSO
all down weight outliers through different mechanisms and are therefore able to detect the effect. CAUSE
uses variants that do not reach genome-wide significance which contribute to evidence of a causal effect and
models multiple sources of pleiotropy allowing it to accommodate the outlying variant and detect the effect.
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Figure SN9: Effect size estimates and variant level contribution to CAUSE test statistics for systolic blood
pressure (SBP) and coronary artery disease (CAD). Effect estimates for SBP are taken from the GWAS of
Ehret et al. which has lower power than the study used in the main Results. Symbols and error bars as
in previous plots. The dotted line shows the IVW estimate obtained using only genome-wide significant
(p < 5 · 10−8) variants.

Traits CAUSE IVW Egger Wtd Med Wtd Mode MR-PRESSO LCV GCP LCV pval CAUSE q GC GC pval

SBP → CAD 0.0017 ↑ 0.061 ↑ 0.43 ↓ 1.1 · 10−9 ↑ 1.5 · 10−11 ↑ 0.00091 ↑ 0.49 0.043 0.54 0.34 7.3 · 10−15

DBP → CAD 0.0012 ↑ 0.064 ↑ 0.87 ↑ 4.7 · 10−8 ↑ 1.8 · 10−7 ↑ 0.013 ↑ 0.58 0.053 0.38 0.29 1.4 · 10−10

SBP → Stroke 0.0024 ↑ 0.0053 ↑ 0.26 ↓ 0.00044 ↑ 0.0037 ↑ 0.0075 ↑ 0.13 0.34 0.54 0.37 1.8 · 10−7

DBP → Stroke 0.0021 ↑ 2.3 · 10−6 ↑ 0.74 ↑ 8.7 · 10−5 ↑ 0.0048 ↑ 6.9 · 10−5 ↑ 0.12 0.43 0.38 0.34 2.2 · 10−5

SBP → T2D 0.25 ↑ 0.017 ↑ 0.29 ↑ 0.19 ↑ 0.32 ↑ 0.022 ↑ −0.28 0.35 0.1 0.18 0.0033
DBP → T2D 0.11 ↑ 0.081 ↑ 0.039 ↑ 0.16 ↑ 0.26 ↑ 0.13 ↑ −0.19 0.42 0.12 0.12 0.079
DBP → Asthma 1 ↓ 0.52 ↓ 0.33 ↑ 0.44 ↓ 0.59 ↓ 0.53 ↓ −0.06 0.77 0.04 0.06 0.37
SBP → Asthma 1 ↓ 0.84 ↓ 0.64 ↑ 0.72 ↓ 0.66 ↓ 0.55 ↓ −0.14 0.79 0.04 0.01 0.82

Table SN1: Summary of results using the lower powered blood pressure GWAS of Ehret et al. Columns
2-7 give the p-value for each MR method. Values are bold if p < 0.05. Arrows indicate the sign of the
corresponding effect estimate. LCV GCP and LCV pval give estimated GCP from LCV and p-value testing
that GCP=0. Values are bold if estimated GCP> 0.6. The “CAUSE q” column gives the posterior median
of q in the CAUSE sharing model. GC and GC pval give the genetic correlation and p-value testing that
genetic correlation is zero estimated by LD score regression. In each section, pairs are ordered by increasing
genetic correlation p-value.
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[16] Eveline Nüesch, Caroline Dale, Tom M. Palmer, Jon White, Brendan J. Keating, et al. “Adult height,
coronary heart disease and stroke: A multi-locus Mendelian randomization meta-analysis”. In: Inter-
national Journal of Epidemiology 45.6 (2016), pp. 1927–1937.

[17] Sadiya S. Khan, Hongyan Ning, John T. Wilkins, Norrina Allen, Mercedes Carnethon, et al. “Associ-
ation of body mass index with lifetime risk of cardiovascular disease and compression of morbidity”.
In: JAMA Cardiology 3.4 (2018), pp. 280–287.

20



[18] Micael L Ganz, Neil WIntfeld, Qian Li, Veronica Alas, Jakob Langer, et al. “The association of body
mass index with the risk of type 2 diabetes: A case-control study nested in an electronic health records
system in the United States”. In: Diabetology and Metabolic Syndrome 6.1 (2014), pp. 1–8.

[19] Ara Jo and Arch G. Mainous. “Informational value of percent body fat with body mass index for the
risk of abnormal blood glucose: A nationally representative cross-sectional study”. In: BMJ Open 8.4
(2018), pp. 1–7.

[20] K. G. Tantisira, A. A. Litonjua, S. T. Weiss, and A. L. Fuhlbrigge. “Association of body mass with
pulmonary function in the Childhood Asthma Management Program (CAMP)”. In: Thorax 58.12
(2003), pp. 1036–1041.

[21] Raquel Granell, A. John Henderson, David M. Evans, George Davey Smith, Andrew R. Ness, et al.
“Effects of BMI, Fat Mass, and Lean Mass on Asthma in Childhood: A Mendelian Randomization
Study”. In: PLoS Medicine 11.7 (2014), pp. 1–14.

[22] Sandra Ekström, Jessica Magnusson, Inger Kull, Niklas Andersson, Matteo Bottai, et al. “Body Mass
Index Development and Asthma Throughout Childhood”. In: American Journal of Epidemiology 186.2
(2017), pp. 255–263.

[23] Benjamin F. Voight, Gina M. Peloso, Marju Orho-Melander, Ruth Frikke-Schmidt, Maja Barbalic,
et al. “Plasma HDL cholesterol and risk of myocardial infarction: A mendelian randomisation study”.
In: The Lancet 380.9841 (2012), pp. 572–580.

[24] Stephen Burgess and Jack Bowden. “Integrating summarized data from multiple genetic variants in
Mendelian randomization: bias and coverage properties of inverse-variance weighted methods”. In:
arXiv (2015). arXiv: 1512.04486.

[25] Daniel J Rader and G Kees Hovingh. “HDL and cardiovascular disease”. In: The Lancet 384.9943
(2014), pp. 618–625.

[26] Arshag D Moordian. “Dyslipidemia in type 2 diabetes mellitus”. In: Nature Clinical Practice 5.3
(2009), pp. 150–159.

[27] Jannick Pétremand, Julien Puyal, Jean Yves Chatton, Jessica Duprez, Florent Allagnat, et al. “HDLs
protect pancreatic β-cells against ER stress by restoring protein folding and trafficking”. In: Diabetes
61.5 (2012), pp. 1100–1111.

[28] Tove Fall, Weijia Xie, Wenny Poon, Hanieh Yaghootkar, Reedik Magi, et al. “Using genetic variants
to assess the relationship between circulating lipids and type 2 diabetes”. In: Diabetes 64.7 (2015),
pp. 2676–2684.

[29] Cholesterol Treatment Trialsists Collaborators. “Efficacy and safety of cholesterol-lowering treatment:
prospective meta-analysis of data from 90 056 participants in 14 randomised trials of statins”. In: The
Lancet (2005).

[30] Jonathan C. Cohen, Eric Boerwinkle, Thomas H. Mosley Jr, and Helen H. Hobbs. “Sequence Variations
in PCSK0, Low LDL and Protection against Coronary Heart Disease”. In: Heart Disease (2011),
pp. 1264–1272.

[31] Daniel J. Rader, Jonathan Cohen, and Helen H. Hobbs. “Monogenic hypercholesterolemia: New in-
sights in pathogenesis and treatment”. In: Journal of Clinical Investigation 111.12 (2003), pp. 1795–
1803.

[32] Naveed Sattar, David Preiss, Heather M. Murray, Paul Welsh, Brendan M. Buckley, et al. “Statins
and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials”. In: The Lancet
375.9716 (2010), pp. 735–742.

[33] Jill P. Crandall, Kieren Mather, Swapnil N. Rajpathak, Ronald B. Goldberg, Karol Watson, et al.
“Statin use and risk of developing diabetes: Results from the diabetes prevention program”. In: BMJ
Open Diabetes Research and Care 5.1 (2017).

[34] Daniel I. Swerdlow, David Preiss, Karoline B. Kuchenbaecker, Michael V. Holmes, Jorgen E.L. Eng-
mann, et al. “HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: Evidence from
genetic analysis and randomised trials”. In: The Lancet 385.9965 (2015), pp. 351–361.

21

http://arxiv.org/abs/1512.04486


[35] Michael Miller, Neil J. Stone, Christie Ballantyne, Vera Bittner, Michael H. Criqui, et al. “Triglyc-
erides and cardiovascular disease: A scientific statement from the American Heart Association”. In:
Circulation 123.20 (2011), pp. 2292–2333.

[36] Nicholas A. Marston, Robert P. Giugliano, Kyung Ah Im, Michael G. Silverman, Michelle L. O’Donoghue,
et al. “Association Between Triglyceride Lowering and Reduction of Cardiovascular Risk Across Mul-
tiple Lipid-Lowering Therapeutic Classes: A Systematic Review and Meta-Regression Analysis of
Randomized Controlled Trials”. In: Circulation 140.16 (2019), pp. 1308–1317.

[37] Ron Do, Cristen J. Willer, Ellen M. Schmidt, Sebanti Sengupta, Chi Gao, et al. “Common variants
associated with plasma triglycerides and risk for coronary artery disease”. In: Nature Genetics 45.11
(2013), pp. 1345–1353.

[38] Georg B. Ehret, Patricia B. Munroe, Kenneth M. Rice, Murielle Bochud, Andrew D. Johnson, et al.
“Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk”. In:
Nature 478.7367 (2011), pp. 103–109. arXiv: NIHMS150003.

[39] Evangelos Evangelou, Helen R. Warren, David Mosen-Ansorena, Borbala Mifsud, Raha Pazoki, et al.
“Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits”.
In: Nature Genetics 50.12 (2018), pp. 1755–1755.

22

http://arxiv.org/abs/NIHMS150003

	Supplementary Tables 1,2,6 and 7
	Empirical Parameter Estimation
	Prior Distributions for  and 
	Approximating posteriors of , , and q
	Effects of LD
	Connections with LCV
	Additional Simulation Results
	Effects of the prior on q
	Parameter estimation
	Causal effects with shared factors
	Asymptotic behavior

	Existing Information About Pairs of GWAS Traits
	Discussion of selected negative results of CAUSE
	Body fat percentage and CAD and T2D
	Triglycerides and CAD

	Results using a low powered blood pressure GWAS

